24 research outputs found

    Case Report: Event-Related Desynchronization Observed During Volitional Swallow by Electroencephalography Recordings in ALS Patients With Dysphagia

    Get PDF
    Dysphagia is a severe disability affecting daily life in patients with amyotrophic lateral sclerosis (ALS). It is caused by degeneration of both the bulbar motor neurons and cortical motoneurons projecting to the oropharyngeal areas. A previous report showed decreased event-related desynchronization (ERD) in the medial sensorimotor areas in ALS dysphagic patients. In the process of degeneration, brain reorganization may also be induced in other areas than the sensorimotor cortices. Furthermore, ALS patients with dysphagia often show a longer duration of swallowing. However, there have been no reports on brain activity in other cortical areas and the time course of brain activity during prolonged swallowing in these patients. In this case report, we investigated the distribution and the time course of ERD and corticomuscular coherence (CMC) in the beta (15-25 Hz) frequency band during volitional swallow using electroencephalography (EEG) in two patients with ALS. Case 1 (a 71-year-old man) was diagnosed 2 years before the evaluation. His first symptom was muscle weakness in the right hand; 5 months later, dysphagia developed and exacerbated. Since his dietary intake decreased, he was given an implantable venous access port. Case 2 (a 64-year-old woman) was diagnosed 1 year before the evaluation. Her first symptom was open-nasal voice and dysarthria; 3 months later, dysphagia developed and exacerbated. She was given a percutaneous endoscopic gastrostomy. EEG recordings were performed during volitional swallowing, and the ERD was calculated. The average swallow durations were 7.6 ± 3.0 s in Case 1 and 8.3 ± 2.9 s in Case 2. The significant ERD was localized in the prefrontal and premotor areas and lasted from a few seconds after the initiation of swallowing to the end in Case 1. The ERD was localized in the lateral sensorimotor areas only at the initiation of swallowing in Case 2. CMC was not observed in either case. These results suggest that compensatory processes for cortical motor outputs might depend on individual patients and that a new therapeutic approach using ERD should be developed according to the individuality of ALS patients with dysphagia

    Event-Related Desynchronization and Corticomuscular Coherence Observed During Volitional Swallow by Electroencephalography Recordings in Humans

    Get PDF
    Swallowing in humans involves many cortical areas although it is partly mediated by a series of brainstem reflexes. Cortical motor commands are sent to muscles during swallow. Previous works using magnetoencephalography showed event-related desynchronization (ERD) during swallow and corticomuscular coherence (CMC) during tongue movements in the bilateral sensorimotor and motor-related areas. However, there have been few analogous works that use electroencephalography (EEG). We investigated the ERD and CMC in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow by EEG recordings in 18 healthy human subjects. As a result, we found a significant ERD in the beta frequency band and CMC in the theta, alpha, and beta frequency bands during swallow in those cortical areas. These results suggest that EEG can detect the desynchronized activity and oscillatory interaction between the cortex and pharyngeal muscles in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow in humans

    Gait-combined closed-loop brain stimulation can improve walking dynamics in Parkinsonian gait disturbances: a randomised-control trial

    Get PDF
    日本発、歩行リハビリテーションの未来への一歩 パーキンソン病に新たな光明. 京都大学プレスリリース. 2023-06-23.[Objective] Gait disturbance lowers activities of daily living in patients with Parkinson’s disease (PD) and related disorders. However, the effectiveness of pharmacological, surgical and rehabilitative treatments is limited. We recently developed a novel neuromodulation approach using gait-combined closed-loop transcranial electrical stimulation (tES) for healthy volunteers and patients who are post-stroke, and achieved significant entrainment of gait rhythm and an increase in gait speed. Here, we tested the efficacy of this intervention in patients with Parkinsonian gait disturbances. [Methods] Twenty-three patients were randomly assigned to a real intervention group using gait-combined closed-loop oscillatory tES over the cerebellum at the frequency of individualised comfortable gait rhythm, and to a sham control group. [Results] Ten intervention sessions were completed for all patients and showed that the gait speed (F(1, 21)=13.0, p=0.002) and stride length (F(1, 21)=8.9, p=0.007) were significantly increased after tES, but not after sham stimulation. Moreover, gait symmetry measured by swing phase time (F(1, 21)=11.9, p=0.002) and subjective feelings about freezing (F(1, 21)=14.9, p=0.001) were significantly improved during gait. [Conclusions] These findings showed that gait-combined closed-loop tES over the cerebellum improved Parkinsonian gait disturbances, possibly through the modulation of brain networks generating gait rhythms. This new non-pharmacological and non-invasive intervention could be a breakthrough in restoring gait function in patients with PD and related disorders

    Pathophysiology of unilateral asterixis due to thalamic lesion.

    Get PDF
    [Objective]:Unilateral asterixis has been reported in patients with thalamic lesion. This study aims at elucidating the pathophysiology of the thalamic asterixis. [Methods]:Two cases with unilateral asterixis caused by an infarction in the lateral thalamus were studied by analysing the asterixis-related cortical activities, transcranial magnetic stimulation (TMS) for motor cortex excitability and probabilistic diffusion tractography for the thalamo-cortical connectivity. [Results]:Averaging of electroencephalogram (EEG) time-locked to the asterixis revealed rhythmic oscillations of a beta band at the central area contralateral to the affected hand. TMS revealed a decrease in the motor evoked potential (MEP) amplitude and a prolongation of the silent period (SP). The anatomical mapping of connections between the thalamus and cortical areas using a diffusion-weighted image (DWI) showed that the lateral thalamus involved by the infarction was connected to the premotor cortex, the primary motor cortex (M1) and the primary somatosensory cortex (S1) of the corresponding hemisphere. [Conclusions]:The thalamic asterixis is mediated by the sensorimotor cortex, which is subjected to excessive inhibition as a result of the thalamic lesion involving the ventral lateral nucleus. [Significance]:This is the first demonstration of participation of the sensorimotor cortex in the generation of asterixis due to the lateral thalamic lesion

    Case report: A novel approach of closed-loop brain stimulation combined with robot gait training in post-stroke gait disturbance

    Get PDF
    Most post-stroke patients have long-lasting gait disturbances that reduce their daily activities. They often show impaired hip and knee joint flexion and ankle dorsiflexion of the lower limbs during the swing phase of gait, which is controlled by the corticospinal tract from the primary motor cortex (M1). Recently, we reported that gait-synchronized closed-loop brain stimulation targeting swing phase-related activity in the affected M1 can improve gait function in post-stroke patients. Subsequently, a gait-training robot (Orthobot®) was developed that could assist lower-limb joint movements during the swing phase of gait. Therefore, we investigated whether gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase could enhance the recovery of post-stroke gait disturbance. A 57-year-old female patient with chronic post-stroke hemiparesis underwent closed-loop brain stimulation combined with robot-assisted training for 10 min 2 years after left pons infarction. For closed-loop brain stimulation, we used transcranial oscillatory electrical current stimulation over the lesioned M1 foot area with 1.5 mA of DC offset and 0–3 mA of sine-wave formed currents triggered by the paretic heel contact to set the maximum current just before the swing phase (intervention A; two times repeated, A1 and A2). According to the N-of-1 study design, we also performed sham stimulation (intervention B) and control stimulation not targeting the swing phase (intervention C) combined with robot-assisted training in the order of A1-B-A2-C interventions. As a result, we found larger improvements in gait speed, the Timed Up and Go test result, and muscle strength after the A1 and A2 interventions than after the B and C interventions. After confirming the short-term effects, we performed an additional long-term intervention twice a week for 5 weeks, for a total of 10 sessions. Gait parameters also largely improved after long-term intervention. Gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase of gait may promote the recovery of gait function in post-stroke patients. Further studies with a larger number of patients are necessary

    Two is more than one: How to combine brain stimulation rehabilitative training for functional recovery?

    Get PDF
    A number of studies have shown that non-invasive brain stimulation has an additional effect in combination with rehabilitative therapy to enhance functional recovery than either therapy alone. The combination enhances use-dependent plasticity induced by repetitive training. The neurophysiological mechanism of the effects of this combination is based on associative plasticity. However, these effects were not reported in all cases. We propose a list of possible strategies to achieve an effective association between rehabilitative training with brain stimulation for plasticity: (1) control of temporal aspect between stimulation and task execution; (2) the use of a shaped task for the combination; (3) the appropriate stimulation of neuronal circuits where use-dependent plastic changes occur; and (4) phase synchronization between rhythmically patterned brain stimulation and task-related patterned activities of neurons. To better utilize brain stimulation in neuro-rehabilitation, it is important to develop more effective techniques to combine them

    Combination of Static Magnetic Fields and Peripheral Nerve Stimulation Can Alter Focal Cortical Excitability

    Get PDF
    For clinical application of transcranial static magnetic stimulation (tSMS), it is important to achieve a focal target cortical stimulation. Previous study suggested that the associative stimulation combining non-invasive stimulation of the motor cortex (M1) and the peripheral nerve stimulation (PNS) may be useful to produce cortical excitability change. To test this hypothesis, we measured the M1 excitability and intracortical circuits by using transcranial magnetic stimulation (TMS) before and after the tSMS of short duration (5 min) combined with PNS. Thirty-three normal volunteers were participated; tSMS+PNS (n = 11), sham+PNS (n = 11), and tSMS alone (n = 11). We found the transient suppression of the motor-evoked potential (MEP) of the right abductor pollicis brevis (APB) muscle, but not of the abductor digiti minimi (ADM) muscle, when combining tSMS with PNS over median nerve at the wrist. The lack of suppressive effect on APB in tSMS alone with short duration is in accord with the previous observation. In addition, the tendency of transient enhancement of the short-latency intracortical inhibition was observed immediately after intervention in the tSMS±PNS group. These findings show that the combination of tSMS and PNS can induce the cortical excitability change in target cortical motor area and potentiate the suppression effect

    Neurofeedback Control of the Human GABAergic System Using Non-invasive Brain Stimulation

    Get PDF
    Neurofeedback has been a powerful method for self-regulating brain activities to elicit potential ability of human mind. GABA is a major inhibitory neurotransmitter in the central nervous system. Transcranial magnetic stimulation (TMS) is a tool that can evaluate the GABAergic system within the primary motor cortex (M1) using paired-pulse stimuli, short intracortical inhibition (SICI). Herein we investigated whether neurofeedback learning using SICI enabled us to control the GABAergic system within the M1 area. Forty-five healthy subjects were randomly divided into two groups: those receiving SICI neurofeedback learning or those receiving no neurofeedback (control) learning. During both learning periods, subjects made attempts to change the size of a circle, which was altered according to the degree of SICI in the SICI neurofeedback learning group, and which was altered independent of the degree of SICI in the control learning group. Results demonstrated that the SICI neurofeedback learning group showed a significant enhancement in SICI. Moreover, this group showed a significant reduction in choice reaction time compared to the control group. Our findings indicate that humans can intrinsically control the intracortical GABAergic system within M1 and can thus improve motor behaviors by SICI neurofeedback learning. SICI neurofeedback learning is a novel and promising approach to control our neural system and potentially represents a new therapy for patients with abnormal motor symptoms caused by CNS disorders

    Anodal transcranial patterned stimulation of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter human gait.

    Get PDF
    The corticospinal system and local spinal circuits control human bipedal locomotion. The primary motor cortex is phase-dependently activated during gait; this cortical input is critical for foot flexor activity during the swing phase. We investigated whether gait-combined rhythmic brain stimulation can induce neuroplasticity in the foot area of the motor cortex and alter gait parameters. Twenty-one healthy subjects participated in the single-blinded, cross-over study. Each subject received anodal transcranial patterned direct current stimulation over the foot area of the right motor cortex during gait, sham stimulation during gait, and anodal transcranial patterned direct current stimulation during rest in a random order. Six subjects were excluded due to a failure in the experimental recording procedure. Complete-case analysis was performed using the data from the remaining 15 subjects. Self-paced gait speed and left leg stride length were significantly increased after the stimulation during gait, but not after the sham stimulation during gait or the stimulation during rest. In addition, a significant increase was found in the excitability of the corticospinal pathway of the left tibialis anterior muscle 30 min after stimulation during gait. Anodal transcranial patterned direct current stimulation during gait entrained the gait cycle to enhance motor cortical activity in some subjects. These findings suggest that the stimulation during gait induced neuroplasticity in corticospinal pathways driving flexor muscles during gait
    corecore